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Introduction 

The object of this study is a cable used to create superconductors. The cable is made of twenty-
seven strands; each strand has a particular structure obtained combining different materials in a 
proper shape. The strands are twisted and then rolled by a machine to give them the cable shape. 
This operation causes several damages in the strands, which cause in the finished cable worst 
conducting properties than wished. 
The target of this study is to create a FEM model to study the effects of the technology process 
used to manufacture superconducting cables, with the aim to understand which the critical strand 
is and how it will be damaged by the process. 

Building the model 

Previews model 

The superconducting R&D group of Fermilab had already realized a FEM model of a single 
strand. That model is really detailed: it completely represents the strand geometry and it contains 
all the information needed to describe the different materials position and shape. 
It shows really a good match with experimental results, but because of its detailed nature, it takes 
really a long calculation time to find the results. This is the reason why it is not possible to use 
the same model to study the whole cable: the computing would take too much time to be 
completed. 
So we decided to split the analysis in two steps: the first step will implement a simplified model 
of the strand to build the cable and simulate the technology process on it. With this model, we 
will be able to understand which strands are more interested in deformation (and so in damages) 
so that we can circumscribe the following analysis. In the second step, we will extrapolate 
information about the load cases seen by the more critical strands and then we will apply them to 
the detailed model of the single strand. In this way, we will significantly reduce the computing 
time without losing important information about the deformation process of the cable. 

Simplified model of the strand 



Firstly we had to decide how to simplify the strand model to let it be less heavy in calculation. 
Figure 1 shows the detailed model, the simplified model and a comparison between the two 
models. As shown in the picture, in the detailed model the strand is represented by a circle (with 
the mechanical properties of Cu) in which 108 hexagons are disposed in a honeycomb shape. 
The hexagons have Nb mechanical properties, while the little circles in them have the Sn 
properties.   

The model represents only a quarter of the strand because of symmetry considerations. To 
simplify the model, we chose to represent the whole honeycomb with a single hexagon, setting 
for the material weighted average properties referred to area percentage of each component of 
the honeycomb. Table 1 shows mechanical properties used for each component of the strand. 
 
Material Young modulus (Gpa) Poisson modulus Yield tensile strength (Mpa) 

Cu 110 0.364 280 
Sn 41.4 0.330 20 
Nb 103 0.380 420 

Table 1 – Material properties 
 
Now the model is ready to run. We wanted this simplified model to be able to give us 
information only about strands deformation, we didn’t care about stress or material local 
behavior at this point. So we ran the two models (detailed and simplified) to compare 
deformation results. We found errors between 8-2 %. This result is not really disappointing: we 
are performing a non-linear analysis, so average properties were not the exact solution we 
needed. The simplified model stiffness appeared to be higher than detailed model stiffness. This 
is the reason why we chose to correct material percentages (increasing Sn percentage, which has 
the lowest Young modulus) with the aim to align simplified model results with detailed model 
results. Table 2 shows corrections applied to material percentages, while Table 3 shows the 
improvement obtained with the correction. 
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Figure 1 – detailed model (a), simplified model (b), comparison (c) 



 
Table 3 is not enough to prove the quality of our simplified model. We performed a more 
detailed comparison between the two model studying X and Y component of displacement, Von 
Mises plastic strain and plastic work. The results are shown in Figure 2  
The comparison shows how good the simplified model is to represent strands deformation. 
Anyway, it is not appropriate to completely study the mechanic behavior of the cable: because of 

Material Original % Modified % Correction % 
Cu 0.206 0.156 - 0.05 
Sn 0.250 0.430 0.18 
Nb 0.544 0.414 - 0.13 

 
 

Max y-component of displacement in simplified model (mm) Error % 
Original % 0.1183 2.2 
Modified % 0.1203 0.5 
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           a 

 
      c Figure 2 – Results comparison: x-displacement (a), y-displacement (b), Von Mises strain (c), plastic work (d) 

Table 2 – material percentages corrections (1mm diameter strand) 

Table 3 – Modified percentage results. Max y-component of displacement detected in detailed model: 0.1209 mm 



its simplified geometry, this model does not estimate local effects as the detailed model does. So 
the idea is to use the simplified model to build an entire cable model which need short calculus 
time to run. With this model, we can find information about strands deformation and load cases. 
Then, using those results as an input, we can model a single strand in a detailed way applying the 
loads found in the simplified analysis. 

Cable model 

The main target of this work is to study a twenty-seven strands cable. Anyway, we wanted to 
find out something about the effects that the number of strands (N) has on cable behavior. So we 
build several cable models for each N analyzed. Figure 3 represents the twenty-seven strands 
cable model (symmetry considerations allowed us to simplify the model). 

It is possible to find several different configurations of the strands along the cross section of the 
cable. We decided to study the configuration shown in Figure 3 because left edge (where strand 
one is located) is different from right edge (where strand fourteen is located); in this way we can 
study both the situation at once.   

Load cases 

The cable is deformed by 4 rollers which give it the final shape, so we decided to set an imposed 
displacement value (calculated knowing the distance between corresponding rollers in the 
process). The deformation is given in 2 steps: 

1) Rectangular deformation: all the strands have the same y-deformation (Figure 4) 

 

 
 

Figure 4 – rectangular deformation 

Figure 3 – Twenty-seven strand cable model 



2) Keystoned turk-head: strands have different y-deformation (Figure 5) 

In order to find out the displacement values to be implemented in the model, we had to know the 
undeformed measures of the cable. Geometric considerations allowed us to write two formulas 
for x and y underformed measure (Figure 6). 

Knowing the ellipse equation (1) and considering the black triangle (2), we can write: 

Solving the system we find equations (3), (4) and (5):  
 
 
 
 
 
 
 
Because of symmetry considerations, we know that the displacement in y direction must be 
equally divided between upper and lower edge of the cable (equation (6)). 

 

Figure 5 – Keystoned turk-head 

 
Figure 6 – Geometric considerations 
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Considering displacement in x direction, we can’t know how to exactly apply the load, so we 
decided to consider two different cases: 

A) Whole displacement applied on left edge of cable (           = 1 in equation (7)) 
B) Displacement equally distributed between left and right edges of cable (           = 2 

in equation (7)) 

 
Figure 7 shows the differences between load cases (A) and (B). 

 

Using the model 

Deformation as a function of N 

For each N analyzed, we chose to apply 3 values of         −         (  ): 

 

 
Figure 7 – Load cases: 𝒔𝒑𝒍𝒊𝒕𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟏 (top) and 𝒔𝒑𝒍𝒊𝒕𝒇𝒂𝒄𝒕𝒐𝒓 = 𝟐 (bottom) 

1)   𝑤𝑐 = 𝑥𝑢𝑛𝑑𝑒𝑓 − ∆𝑥 (with same ∆𝑥 for all 
N) 
2)   𝑥𝑢𝑛𝑑𝑒𝑓 −𝑤𝑐
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 (which is the commonly used formula in cables design) 
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We applied both load cases ((A) and (B)) in order to find out how the number of strands changes 
the deformation condition in the cable. Because of the cable shape and because of the load cases, 
we have that strand one has the highest displacement in y direction. We thought that maximum 
value of y-displacement in strand one would be the correct parameter to study deformation level 
in the cable: the higher is maximum y-displacement in strand one, the higher is cable 
deformation and failure probability. Figure 8 confirms that strand one has the highest y-
displacement (red areas feel 99% of the maximum value of y-displacement):  

Figure 9, Figure 11, and Figure 10 show how maximum y-displacement value changes with N:  

 
Figure 9 – Load case 1-A 
 

Figure 8 - Max y-displ location 

N=3                        N=5 N=7                        N=11  

N=15                     N=19                      N=23                      N=27  



 
Firstly we noticed that load case (1) and (3) are really similar, so we decided to keep only load 
case (1) for next analysis. Then we saw that the maximum y-displacement has the same trand of 
the load aplyed: if    increases linearly with N, maximum y-displacement also increases linearly 
with N; otherwise, if    is the same for all N, maximum y-displacement is constant. 
Load case (B) shows that load repartition is important in maximum y-displacement value, but it 
doesn’t change its relation with N (Figure 12 and Figure 13). 
 

 
Figure 11 – Load case 2-A 
 

 
Figure 10 – Load case 3-A 
 

 
Figure 12 – Load case 1-B 
 



 

Choosing odd or even N 

We found that N has not a big influence on cable solicitation as long as you give it a constant 
value of    and you consider a cable with an odd N. We wanted to be sure that this consideration 
is true also for an even N. Figure 14 shows cable’s configurations which have the highest values 
of        with N=9 and N=10. As shown, choosing an even N gives to the cable two symmetry 
planes; this is the reason why we are allowed to reduce the model to a quarter of the total cable, 
applying just a half load to left edge. This suggested us that an even N could cause a smaller load 
on the cable, so we studied both cases (odd or even N) to understand which one is better. 

 
Using the formula:   =

 

2

       

cos       ℎ 
 , we built Table 4 (numbers contained in the table are 

normalized by r’). Last columns of the tables contain the value of displacement to be applied to 
the model (  ). As shown in the table, with an odd N we have a load which is exactly a half of 
the load given by an even N. On the other hand, with an even N we can apply half load to one 
edge of the cable. Therefore the choose of an even or an odd N changes        and at the same 
time it also changes   , so that overall it doesn’t really change load condition on the cable. 

 
Figure 13 – Load case 2-B 
 

 
Odd N 

 
     Even N 

Figure 14 – Undeformed cable with an odd (left) and an even (right) N 



 

Comparison with experimental results 

In the paragraph “Load cases” we saw that it is not possible to know how the load is distributed 
between left and right edges of the cable (with an odd N). In order to understand which load case 
best suits the real load condition, we performed a comparison between experimental and FEM 
analyses results. Figure 15 shows the measure used in the comparison for the twenty-seven 
strands cable. 

Comparison results are shown in Figure 17 and Figure 16 for both load cases A (whole load on left edge) 
and B (load equally divided between left and right edge).  
As shown in the second graph, in load case B the FEM model’s lasts strands result more deformed than 
on the experimental measurements. 

 

𝑥𝑠𝑛 

Figure 15 – Measure used for the comparison 

Even N 𝒙𝒑𝒂𝒓 𝒘𝒄−𝒑𝒂𝒓 ∆𝒘−𝒑𝒂𝒓 

2 3.464102 2 1.464101615 

4 5.464102 4 1.464101615 

6 7.464102 6 1.464101615 

8 9.464102 8 1.464101615 

10 11.4641 10 1.464101615 

12 13.4641 12 1.464101615 

14 15.4641 14 1.464101615 

16 17.4641 16 1.464101615 

18 19.4641 18 1.464101615 

20 21.4641 20 1.464101615 

22 23.4641 22 1.464101615 

24 25.4641 24 1.464101615 

26 27.4641 26 1.464101615 

28 29.4641 28 1.464101615 

30 31.4641 30 1.464101615 

32 33.4641 32 1.464101615 

34 35.4641 34 1.464101615 

36 37.4641 36 1.464101615 

38 39.4641 38 1.464101615 

40 41.4641 40 1.464101615 
 

Odd N 𝒙𝒑𝒂𝒓 𝒘𝒄−𝒑𝒂𝒓 ∆𝒘−𝒑𝒂𝒓 

3 3.732051 3 0.732050808 

5 5.732051 5 0.732050808 

7 7.732051 7 0.732050808 

9 9.732051 9 0.732050808 

11 11.73205 11 0.732050808 

13 13.73205 13 0.732050808 

15 15.73205 15 0.732050808 

17 17.73205 17 0.732050808 

19 19.73205 19 0.732050808 

21 21.73205 21 0.732050808 

23 23.73205 23 0.732050808 

25 25.73205 25 0.732050808 

27 27.73205 27 0.732050808 

29 29.73205 29 0.732050808 

31 31.73205 31 0.732050808 

33 33.73205 33 0.732050808 

35 35.73205 35 0.732050808 

37 37.73205 37 0.732050808 

39 39.73205 39 0.732050808 

41 41.73205 41 0.732050808 
 

Table 4 – Deformation to be applied to a cable with an odd (left) or an even (right) N. 



Figure 18 shows the overlapped picture of strand one and fourteen (obtained with the model 
analysis and with a microscope) in both load cases A and B. This picture confirms that load case 
A best represents load distribution in the cable.  
 
 
 
 
 

 

 

   
Figure 18 – Overlapped picture of strand 1 and 14 in load cases A (left) and B (right)  

Figure 17 – Measure comparison for load case A 

Figure 16 – Measure comparison for load case B 



 
It is possible to understand this result thinking about the strand as a spring. Figure 19 shows a 
schematization of the cable: three springs are represented instead of the strands which should be 
in left and right edges. 
 
 
 
 
 
 
 
 
Trying to impose the same displacement on both edges (as load case B should do), springs will 
react with a different value of force (there are two springs on right side, each one reacting with 
about the same force then the single spring on left side). So the cable (which is free to move in 
the plane as soon as the spindle is not rigidly fixed on the machine: it could orientate itself for 
small angular values) will move in left direction, and the less rigid part of the structure will get 
the highest deformation. 
 

Detailed model of the critical strands 

Thanks to the whole cable analysis, we could determine which the critical strands were. The first 
step of rectangular deformation gives the highest values of plastic energy to the first strand of the 
cable. The keystoning deformation increases the areas with high values of plastic energy but 
doesn’t really change the solicitation in strand number one. On the other hand, the keystoning 
mainly acts on the strand number two, so that it could become the critical strand. Figure 20 
shows critical strands in rectangular and keystoning deformation.  
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Figure 19 – Schematic view of the cable 

 

Figure 20 – Plastic work in rectangular (top) and keystoning deformation (middle). Zoom of critical 
strands (bottom) 



Results shown in Figure 20 are obtained modeling a twenty-seven strands cable with load data 
stated in Table 5. 
 

    (mm)    (mm)   2 (mm)   −    (mm) α (deg) 
0.242 0.05       0.054 0.085 1 

Table 5 – Load data for the twenty-seven strands cable 
 
These analyses let us understand that the most critical strand for rectangular deformation is 
strand number one; this is confirmed by the experiments which have all of the damaged 
subelements in strand one. So we performed the analysis on a detailed model of strand one, by 
using surface displacements obtained through the simplified cable model. 
We had two different cables made with different N and different load cases: 

- Twenty-seven strands cable (   =   242   ,   =    5   ) 
- Forty strands cable (   =   42    ,   =    5   ) 

 
Results are shown in  and Figure 21 and Figure 22. 

 

 

 
 

  

Figure 21 – Principal traction strains in strand 1 of the 27 strands cable 

Figure 22 – Principal traction strains in strand 1 of the 40 strands cable 
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In the most critical area (where some experimental samples show damaged subelements) the 
principal traction strain reaches values between 0.35 (Figure 21) and 0.53 (Figure 22), which is 
the same interval detected by a previews work on the single strand deformation (0.48±0.1). 
Obviously we would need a larger specimen to really compare experimental results, but we can 
use these preliminary results to study model’s sensitivity to some parameters (as rollers’ x and y 
distance).   
 

Sensitivity to rollers’ x distance 

In order to understand how rollers’ x distance acts on the cable, we performed several analyses 
on the detailed model of the first strand with different values of   . The commonly used 
parameter for this kind of study is called width compaction (     , defined in equation (11)). 
Anyway,    is not really a good parameter for this study because it has different effects if 
applied to cables with different diameters and different N. 
Looking for a more general parameter, we noticed that using   =   ′, it is possible to obtain a 
∆  which is a constant for all N (see Table 4). To preserve this property also for different values 
of rollers’ x distance, we decided to express    as stated in equation (8).  

In this way it is still possible to have a constant ∆  for all N, as show in equation (9) (using 
equation (4) and (8)): 

At this point it is possible to eliminate the dependence from  ′ by using an adimensional 
parameter (equation (10)): 

We investigated a range of γ between -0.3 and 0.5. To understand strand one’s behavior, we 
looked for high values of principal traction strain in the copper channels between subelements, in 
order to find out if critical areas in the strand can change depending on load cases. Figure 23 
shows how load are obtained from the simplified model of the cable to be applied to the detailed 
model. 
 
 
 
 

𝑤𝑐 =  𝑁 + 𝛾 𝑟′ 8) 

∆𝑤= 𝑥𝑢𝑛𝑑𝑒𝑓 − 𝑤𝑐 =   3 − 1 − 𝛾 𝑟′ 9) 

𝜀𝑤 =
∆𝑤
𝑟′

=  3 − 1 − 𝛾 10) 

𝑤𝑐𝑜𝑚𝑝 =
𝑤𝑐

𝑥𝑢𝑛𝑑𝑒𝑓
 11) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6 shows the load values obtained using different γ. 
 
 
 
 
 
We mapped the principal traction strain in the copper spaces between subelements, in order to 
find out which the critical areas were and to study γ’s influence on their location. The map used 
for this study is shown in Figure 24. Strains are collected from row one to row thirty; yellow 
rounded rows were not used because of really low strain values. In each row, values are collected 
from inner to outer points. 
All the strain values located in the strand have been ordered with this criterion in a vector. It is 
possible to view strains trend in strand one for each γ plotting that vector as shown in Figure 25. 
We can analyze left and right part of the strand separately. In left part we find two areas with 
high values of strain (circled in orange and black in Figure 24 and Figure 25) while in left part 
we can notice just one critical area (circled in green in Figure 24 and Figure 25). As load 
increases, critical areas expand and max values become higher. The trends in Figure 25 show 
that increasing the load value, right part of strand one gradually becomes more critical then left 
part, so that damage can be expected also in those subelements. 
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γ 𝒅𝒙𝒔𝟏 𝒅𝒙𝒔𝟐 𝒅𝒚 Width compaction 
-0.3 0.416 0.183 0.052 0.96 

0 0.262 0.094 0.052 0.98 
0.5 0.1265 0.030 0.052 0.99 

 Table 6 – Load cases for various γ 

Figure 23 – Load application on detailed model 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 25 – Strain trend in strand one for 𝜸 = −𝟎 𝟑 (red), 𝜸 = −𝟎 (blue) and 𝜸 = 𝟎 𝟓 (green) 

Figure 24 – Strain map in strand one 

Left part Right part 



Conclusions 

A simplify model of a single strand has been created and his properties set up in order to fit the 
results found for the deformation of the detailed model. This simplified model has been used to 
build a whole cable model which an acceptable DOF, so that the simulation wouldn’t take too 
much time. Results obtained from this model have been compared with experimental results 
(measurement comparison shows a good match). 
These analyses let us understand that the rectangular deformation gives most part of plastic 
energy to strand number one (which is the critical one). 
The keystoning deformation extends the areas with high values of plastic energy, but it doesn’t 
really change max value in strand one. Anyway, strand two and three become really interested in 
deformation, so that they could reach critical conditions. 
Damaged subelements in experimental samples are always found in strand number one (for 
rectangular deformation) and sometimes in strand number two (for keystoning deformation), 
confirming the model’s results. 
A study of the effect of the number of strands (N) has been performed; we found out that N is not 
really important in deformation level in strand one (as long as you give to the cable the same 
displacement in x direction for all N). 
Concentrating on rectangular deformation, analysis on the detailed model of strand one have 
been performed. 
We firstly applied the same load cases actually used to build real cables, so that we could 
compare results with the pictures obtained with the microscope. The detailed model of the strand 
detects two critical areas, but only one is damaged in experimental samples. Anyway we dodn’t 
have a large specimen to compare to; Marianne Bossert (the technician who works with the 
microscope) says that in some cables (made with different load cases) she noticed damages also 
in the other area detected by the model. 
An analysis of roller’s x distance has been performed. When the rollers get closer (more intense 
load for the strand) the max strain in the copper spaces increases. The critical areas move from 
left part to right part of the strand. 
More analysis with different values of rollers’ x distance should be run in order to confirm this 
behavior and a more accurate comparison with experimental results should be performed to test 
model’s accuracy and usefulness in predicting damages in future cables design. 
 
 


